《航空动力学报》
性能优良可靠的航空发动机代表了工业技术的最高水平。毫不夸张地说,离开优秀的发动机,再优秀的飞机设计也只能存憾。
超级计算机的贡献
现代航空发动机主要是涡扇,基本原理不复杂,但在高度优化的过程中,具体技术已经发展到非常复杂的程度,而恶魔总是在细节之中。
典型涡扇发动机由风扇、高低压压气机、燃烧室、高低压涡轮和喷口组成,民航常用的高涵道比涡扇实际上由风扇产生最大份额的推力,风扇推力与内涵道推力之比恰好就等于涵道比。理想涡桨的涵道比无穷大,内涵道的推力可以忽略不计。直升机用的涡轴则取消风扇,但喷口不产生推力,喷流驱动自由涡轮,转换成轴功率,通过减速齿轮驱动旋翼。这些涡轮类发动机在原理上共用核心机,也就是包含高压压气机、燃烧室和高压涡轮的部分。
压气机在原理上好比电风扇。压气机对着管道吹风,需要可调的导流片和固定的静子把螺旋形前进的气流矫直,但气流与导流片、静子、机匣壁、转轴的交互作用使得发动机内流动情况高度复杂。这还不光是一个三维的问题,时间也是一个因素。比如叶片转速增加,导致流速提高,气流旋转速度也相应提高,但增加有一个过程,要过一段时间才稳定到新的稳态。另外,叶尖速度以声速为极限,达到或者超过声速要引起激波,不光对机匣和相邻叶片造成严重敲击,还严重影响压气效率。压力波在空气中以声速传递,激波是空气速度达到声速后压力波堆积造成的,密度极大提高,锋面好比石墙一样。在空气流道里形成石墙,无疑要造成发动机窒息。实际叶尖速度以为极限。但声速是随空气的温度、密度变化的,压气机对空气逐级压缩,声速实际上是逐步提高的。因此在发动机正常转速下,压气机叶片的叶尖线速度超过了典型大气条件下的声速,就是这个道理。为了尽可能提高压气机的出力,每一级的叶片和静子都要当前级的极限和压缩要求分别分析、设计。
通过高性能计算机的帮助,现在工程人员可以精确模拟出喷气发动机燃烧室的工作情况。
传统上,这些复杂现象只有用风洞来观察。但风洞试验耗费很大,而且实验和观察条件有一定的限制,严重限制了发动机技术的发展。在只有计算尺的年代,发动机内部的流体力学计算只能在宏观层面上进行,局部现象和边界现象都无法有效处理。计算流体力学将整个系统划分为无数细小的单元,每一个单元里建立动态的能量、质量、动量的动态平衡,计算温度、压力、密度、速度、流向分布,把所有的局部现象和边界现象都考虑进去,使得高精度动态数字仿真成为可能。这相当于虚拟的风洞实验,可以在调整设计的过程中一遍一遍地反复,实际观察修改效果。这是非常有力的分析和设计工具,与计算机辅助制造系统连接起来,可以精密设计和制造每一片叶片、导流片、静子,达到最优性能。
燃烧室是另一个很有挑战的设计问题。优秀的燃烧室设计不光提高出力和燃烧效率,还降低氮氧化物和二氧化碳的排放。但高温条件下的复杂流动不容易用风洞观察,动辄1 650摄氏度的工作条件,没有观察窗或者摄像头能耐受这样的高温。燃油需要在喷入燃烧室的时候形成均匀细密的雾滴,空气要在高速稳定的流动中与燃油雾滴均匀混合,点火要做到可靠、平滑,燃烧要稳定传播。由于燃烧室的温度高于耐热合金的熔点,必须靠冷却技术才能稳定持续地工作。冷却空气来自高压压气机的引流,虽然也有几百度的温度,但比燃烧室的温度低多了。燃烧室内尽管设计要求是均匀混合,均匀燃烧,但实际上还是有热点、冷点,冷却用来均衡这些温度差别,使得燃烧室可以达到最大出力和最高效率,避免短板造成的性能损失。另一方面,冷却气流在流动和换热过程中,逐步吸收热量,逐步升温,冷却效果也逐步下降。因此,冷却气流温度、流量、路径、分布需要与燃烧室内的温度分布紧密配合,才能保持壁温均匀。
燃烧室毕竟还是静态部件,涡轮(尤其是高压涡轮)不仅具有和燃烧室一样的耐高温要求,涡轮本身还在高速旋转,可达转/分。强大的离心力不仅对结构材质构成巨大的考验,旋转本身对冷却设计的挑战更大。涡轮叶片是空心的,但进气在翼根,出气在叶片表面。这些微孔的分布和方向很有讲究,不仅要克服离心力把气流“甩”向叶尖的自然倾向、保证内部气流流场和温度均匀分布,还要在叶片表面形成层流,达到最大的隔热效果。气流在物体表面的流动有层流和湍流之分,后者是紊乱的混合,传热快,但前者是“长幼有序”的分层平稳流动,层与层之间的换热不好,形成隔热效应。问题是,叶片表面受到高速旋转和燃烧室的高温燃气冲刷的影响,流场高度复杂。叶片转速和燃气速度还随发动机出力而变,通用电气的LEAP发动机还根据工况自动调节冷却气流的流量,在低推力的时候降低冷却气流流量,改善油耗,这些因素都进一步增加了问题的复杂性。